International Journal of Nanomedicine (Dec 2014)

Evaluation of silica nanoparticle toxicity after topical exposure for 90 days

  • Ryu HJ,
  • Seong NW,
  • So BJ,
  • Seo HS,
  • Kim JH,
  • Hong JS,
  • Park MK,
  • Kim MS,
  • Kim YR,
  • Cho KB,
  • Seo MY,
  • Kim MK,
  • Maeng EH,
  • Son SW

Journal volume & issue
Vol. 2014, no. Supplement 2
pp. 127 – 136

Abstract

Read online

Hwa Jung Ryu,1,* Nak-won Seong,2,* Byoung Joon So,1 Heung-sik Seo,2 Jun-ho Kim,2 Jeong-Sup Hong,2 Myeong-kyu Park,2 Min-Seok Kim,2 Yu-Ri Kim,3 Kyu-Bong Cho,4 Mu yeb Seo,2 Meyoung-Kon Kim,3 Eun Ho Maeng,2 Sang Wook Son1 1Department of Dermatology, Korea University College of Medicine, Seoul, South Korea; 2Korea Testing and Research Institute, Gyunggi-Do, South Korea; 3Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea; 4Department of Clinical Laboratory Science, Shinheung College, Uijeongbu, South Korea *These authors contributed equally to this work Abstract: Silica is a very common material that can be found in both crystalline and amorphous forms. Well-known toxicities of the lung can occur after exposure to the crystalline form of silica. However, the toxicities of the amorphous form of silica have not been thoroughly studied. The majority of in vivo studies of amorphous silica nanoparticles (NPs) were performed using an inhalation exposure method. Since silica NPs can be commonly administered through the skin, a study of dermal silica toxicity was necessary to determine any harmful effects from dermal exposures. The present study focused on the results of systemic toxicity after applying 20 nm colloidal silica NPs on rat skin for 90 days, in accordance with the Organization for Economic Cooperation and Development test guideline 411 with a good laboratory practice system. Unlike the inhalation route or gastrointestinal route, the contact of silica NPs through skin did not result in any toxicity or any change in internal organs up to a dose of 2,000 mg/kg in rats. Keywords: silica nanoparticles, toxicity, dermal route