In Autumn 2020, DOAJ will be relaunching with a new website with updated functionality, improved search, and a simplified application form. More information is available on our blog. Our API is also changing.

Hide this message

Electrospun gelatin/polycaprolactone nanofibrous membranes combined with a coculture of bone marrow stromal cells and chondrocytes for cartilage engineering

International Journal of Nanomedicine. 2015;2015(default):2089-2099


Journal Homepage

Journal Title: International Journal of Nanomedicine

ISSN: 1176-9114 (Print); 1178-2013 (Online)

Publisher: Dove Medical Press

LCC Subject Category: Medicine: Medicine (General)

Country of publisher: United Kingdom

Language of fulltext: English



He X

Feng B

Huang C

Wang H

Ge Y

Hu R

Yin M

Xu Z

Wang W

Fu W

Zheng J



Abstract | Full Text

Xiaomin He,1,* Bei Feng,1,2,* Chuanpei Huang,1 Hao Wang,1 Yang Ge,1 Renjie Hu,1 Meng Yin,1 Zhiwei Xu,1 Wei Wang,1 Wei Fu,1,2 Jinghao Zheng1 1Department of Pediatric Cardiothoracic Surgery, 2Institute of Pediatric Translational Medicine, Shanghai Children’s Medical Center School of Medicine, Shanghai Jiao Tong University, Shanghai, People’s Republic of China *These authors contributed equally to this work Abstract: Electrospinning has recently received considerable attention, showing notable potential as a novel method of scaffold fabrication for cartilage engineering. The aim of this study was to use a coculture strategy of chondrocytes combined with electrospun gelatin/polycaprolactone (GT/PCL) membranes, instead of pure chondrocytes, to evaluate the formation of cartilaginous tissue. We prepared the GT/PCL membranes, seeded bone marrow stromal cell (BMSC)/chondrocyte cocultures (75% BMSCs and 25% chondrocytes) in a sandwich model in vitro, and then implanted the constructs subcutaneously into nude mice for 12 weeks. Gross observation, histological and immunohistological evaluation, glycosaminoglycan analyses, Young’s modulus measurement, and immunofluorescence staining were performed postimplantation. We found that the coculture group formed mature cartilage-like tissue, with no statistically significant difference from the chondrocyte group, and labeled BMSCs could differentiate into chondrocyte-like cells under the chondrogenic niche of chondrocytes. This entire strategy indicates that GT/PCL membranes are also a suitable scaffold for stem cell-based cartilage engineering and may provide a potentially clinically feasible approach for cartilage repairs. Keywords: electrospinning, nanocomposite, cartilage tissue engineering, nanomaterials, stem cells