Remote Sensing (Sep 2023)

Monitoring Spatiotemporal Variation of Individual Tree Biomass Using Multitemporal LiDAR Data

  • Zhiyong Qi,
  • Shiming Li,
  • Yong Pang,
  • Liming Du,
  • Haoyan Zhang,
  • Zengyuan Li

DOI
https://doi.org/10.3390/rs15194768
Journal volume & issue
Vol. 15, no. 19
p. 4768

Abstract

Read online

Assessing the spatiotemporal changes in forest aboveground biomass (AGB) provides crucial insights for effective forest carbon stock management, an accurate estimation of forest carbon uptake and release balance, and a deeper understanding of forest dynamics and climate responses. However, existing research in this field often lacks a comprehensive methodology for capturing tree-level AGB dynamics using multitemporal remote sensing techniques. In this study, we quantitatively characterized spatiotemporal variations of tree-level AGB in boreal natural secondary forests in the Greater Khingan Mountains region using multitemporal light detection and ranging (LiDAR) data acquired in 2012, 2016, and 2022. Our methodology emphasized improving the accuracy of individual tree segmentation algorithms by taking advantage of canopy structure heterogeneity. We introduced a novel three-dimensional metric, similar to crown width, integrated with tree height to calculate tree-level AGB. Moreover, we address the challenge of underestimating tree-level metrics resulting from low pulse density, ensuring accurate monitoring of AGB changes for every two acquisitions. The results showed that the LiDAR-based ΔAGB explained 62% to 70% of the variance of field-measured ΔAGB at the tree level. Furthermore, when aggregating the tree-level AGB estimates to the plot level, the results also exhibited robust and reasonable accuracy. We identified the average annual change in tree-level AGB and tree height across the study region, quantifying them at 2.23 kg and 0.25 m, respectively. Furthermore, we highlighted the importance of the Gini coefficient, which represents canopy structure heterogeneity, as a key environmental factor that explains relative AGB change rates at the plot level. Our contribution lies in proposing a comprehensive framework for analyzing tree-level AGB dynamics using multitemporal LiDAR data, paving the way for a nuanced understanding of fine-scale forest dynamics. We argue that LiDAR technology is becoming increasingly valuable in monitoring tree dynamics, enabling the application of high-resolution ecosystem dynamics products to elucidate ecological issues and address environmental challenges.

Keywords