Symmetry (May 2023)
Multi-Order-Content-Based Adaptive Graph Attention Network for Graph Node Classification
Abstract
In graph-structured data, the node content contains rich information. Therefore, how to effectively utilize the content is crucial to improve the performance of graph convolutional networks (GCNs) on various analytical tasks. However, current GCNs do not fully utilize the content, especially multi-order content. For example, graph attention networks (GATs) only focus on low-order content, while high-order content is completely ignored. To address this issue, we propose a novel graph attention network with adaptability that could fully utilize the features of multi-order content. Its core idea has the following novelties: First, we constructed a high-order content attention mechanism that could focus on high-order content to evaluate attention weights. Second, we propose a multi-order content attention mechanism that can fully utilize multi-order content, i.e., it combines the attention mechanisms of high- and low-order content. Furthermore, the mechanism has adaptability, i.e., it can perform a good trade-off between high- and low-order content according to the task requirements. Lastly, we applied this mechanism to constructing a graph attention network with structural symmetry. This mechanism could more reasonably evaluate the attention weights between nodes, thereby improving the convergence of the network. In addition, we conducted experiments on multiple datasets and compared the proposed model with state-of-the-art models in multiple dimensions. The results validate the feasibility and effectiveness of the proposed model.
Keywords