Plants (Aug 2024)

Permanent Stress Adaptation and Unexpected High Light Tolerance in the Shade-Adapted <i>Chlamydomonas priscui</i>

  • Devon Popson,
  • Susanna D’Silva,
  • Kaylie Wheeless,
  • Rachael Morgan-Kiss

DOI
https://doi.org/10.3390/plants13162254
Journal volume & issue
Vol. 13, no. 16
p. 2254

Abstract

Read online

The Antarctic photopsychrophile, Chlamydomonas priscui UWO241, is adapted to extreme environmental conditions, including permanent low temperatures, high salt, and shade. During long-term exposure to this extreme habitat, UWO241 appears to have lost several short-term mechanisms in favor of constitutive protection against environmental stress. This study investigated the physiological and growth responses of UWO241 to high-light conditions, evaluating the impacts of long-term acclimation to high light, low temperature, and high salinity on its ability to manage short-term photoinhibition. We found that UWO241 significantly increased its growth rate and photosynthetic activity at growth irradiances far exceeding native light conditions. Furthermore, UWO241 exhibited robust protection against short-term photoinhibition, particularly in photosystem I. Lastly, pre-acclimation to high light or low temperatures, but not high salinity, enhanced photoinhibition tolerance. These findings extend our understanding of stress tolerance in extremophilic algae. In the past 2 decades, climate change-related increasing glacial stream flow has perturbed long-term stable conditions, which has been associated with lake level rise, the thinning of ice covers, and the expansion of ice-free perimeters, leading to perturbations in light and salinity conditions. Our findings have implications for phytoplankton survival and the response to change scenarios in the light-limited environment of Antarctic ice-covered lakes.

Keywords