Journal of Crop Protection (Jun 2019)

The synergistic interactions of cellulase enzyme activities of Trichoderma species in colloidal cellulose bioconversion

  • Samira Shahbazi,
  • Shideh Mojerlou

Journal volume & issue
Vol. 8, no. 3
pp. 323 – 337

Abstract

Read online

In this study the cellulytic activity of different species of Iranian Trichoderma isolates including Trichoderma harzianum (NAS-H101), T. aureoviride (NAS-AV106), T. pleuroticola (NAS-P109), T. longibrachiatum (NAS-L110), T. ghanens (NAS-K108), T. virens (NAS- Vi114), T. atroviride (NAS-A113) and T. atroviride (NAS-A112) was studied. The extracellular protein concentration of these isolates was determined by the dye binding method of Bradford. The molecular weight of cellulase enzymes was studied using SDS-PAGE. The lowest extracellular protein production was observed in NAS-K108. The highest Endo and Exo-glucanase activity were observed in NAS-L110 and NAS-A113, respectively. The SDS-PAGE profiles had several enzyme bands such as cellobiohydrolases, endoglucanases and β-glucosidases. The NAS-K108and NAS-P109 had both enzyme bands of CBH I and CBH II, but other isolates had only a sharp enzyme band correlated to CBH I or CBH II. The highest synergy was observed in FPase of NAS-A112, that contained a large amount of Cel 6A (CBH II) and a minor amount of Cel 7B (EG I). The results indicated that NAS-A113 overproduces cellulases, ß-glycosidase, and the extracellular enzymes, which suggest that this species might be utilized as a biological agent and or a source of enzymes for cellulose degradation in colloidal cellulose.

Keywords