Iron-based metal-organic frameworks integrated into 3D printed ceramic architectures
Alma D. Salazar-Aguilar,
Asunción Quintanilla,
Sofía M. Vega-Díaz,
José A. Casas,
Pilar Miranzo,
M. Isabel Osendi,
Manuel Belmonte
Affiliations
Alma D. Salazar-Aguilar
Departamento de Ingeniería Química, Tecnológico Nacional de México, Instituto Tecnológico de Celaya, Av. García Cubas Pte # 600 esq. Avenida Tecnológico, Celaya, Guanajuato, 38010, Mexico; Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar km 15, Madrid, 28049, Spain; Institute of Ceramics and Glass (ICV-CSIC), Campus de Cantoblanco, Kelsen 5, Madrid, 28049, Spain
Asunción Quintanilla
Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar km 15, Madrid, 28049, Spain
Sofía M. Vega-Díaz
Departamento de Ingeniería Química, Tecnológico Nacional de México, Instituto Tecnológico de Celaya, Av. García Cubas Pte # 600 esq. Avenida Tecnológico, Celaya, Guanajuato, 38010, Mexico
José A. Casas
Chemical Engineering Department, Universidad Autónoma de Madrid, Ctra. Colmenar km 15, Madrid, 28049, Spain
Pilar Miranzo
Institute of Ceramics and Glass (ICV-CSIC), Campus de Cantoblanco, Kelsen 5, Madrid, 28049, Spain
M. Isabel Osendi
Institute of Ceramics and Glass (ICV-CSIC), Campus de Cantoblanco, Kelsen 5, Madrid, 28049, Spain
Manuel Belmonte
Institute of Ceramics and Glass (ICV-CSIC), Campus de Cantoblanco, Kelsen 5, Madrid, 28049, Spain; Corresponding author.
The promising applications of metal-organic frameworks (MOF) can be widened if these materials were additive manufactured to develop three-dimensional (3D) MOF architectures. In this work, iron-based MOF/silicon carbide (SiC) composite aqueous inks with a high solids content (64 wt%) are printed into 3D periodic lattices by a direct ink writing technique (Robocasting). MOF appear fully integrated within the cellular architectures, which display total porosities in the range of 74–78% depending on the scaffold design. The 3D MOF-Fe/SiC structures exhibit good mechanical strength (~4.6 MPa) and a semiconductor-like behaviour. The structures show a remarkable response in the hydroxylation of phenol with hydrogen peroxide, demonstrating high selectivity and yield to dihydroxybenzene species.