Analysis of Pickled Cucumber Products, Based on Microbial Diversity and Flavor Substance Detection
Xiaoyue Tang,
Xiangyu Chen,
Fuxiang Li,
Mengmeng Huang,
Lele Xie,
Jingping Ge,
Hongzhi Ling,
Keke Cheng
Affiliations
Xiaoyue Tang
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Xiangyu Chen
Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical and Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
Fuxiang Li
Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical and Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
Mengmeng Huang
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Lele Xie
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Jingping Ge
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Hongzhi Ling
Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
Keke Cheng
Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical and Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
Changes to the microbial community during pickled cucumber fermentation were studied using the 16S rDNA technique. The changes of volatile organic compounds (VOCs) during pickled cucumber fermentation were studied by gas chromatograph–ion mobility spectrometry. At the phylum level, Cyanophyta and Proteobacteria were the dominant flora in the natural fermentation group, and Firmicutes were the dominant flora in the added-bacteria fermentation group. At the generic level, the addition of Lactobacillus led to changes in the community of the bacteria in the added-bacterial fermentation group and decreased the species abundance of other bacteria. In total, 75 volatile organic compounds were identified from naturally fermented pickled cucumber, and 60 volatile organic compounds were identified from fermented pickled cucumber with bacterial addition. The main metabolites were esters, aldehydes, acids, alcohols, ketones, alkanes, nitriles, and alkenes. These metabolites will bring their unique aroma components to the pickled cucumber. Metabolomic analysis of the O2PLS model showed that Weissella and Lactobacillus were closely and positively correlated with nine alcohols, six esters, five aldehydes, four acids, three ketones, and one pyrazine. Pseudomonas and norank_f_Mitochondria show a close positive correlation with four kinds of alcohols, two kinds of esters, one kind of aldehyde, and one kind of nitrile.