Ecology and Evolution (Oct 2020)

Effect of conspecific neighbors on the foraging activity levels of the wintering Oriental Storks (Ciconia boyciana): Benefits of social information

  • Lei Cheng,
  • Lizhi Zhou,
  • Yiwei Bao,
  • Nazia Mahtab

DOI
https://doi.org/10.1002/ece3.6693
Journal volume & issue
Vol. 10, no. 19
pp. 10384 – 10394

Abstract

Read online

Abstract Animals prefer to aggregate in patches with high abundance and availability of food resources. Group foragers typically receive information about food resources by monitoring external events and the behavior of neighbors. The Information Centre Hypothesis proposes that aggregations increase foraging activity levels as a result of social information provided by conspecifics. Increasing the foraging rate has as a result decreasing time devoted to anti‐predator vigilance and may intensify competition among group members. Studies have shown that foraging activities are influenced by factors other than flock size, such as the number and foraging intensity of neighbors. To test these hypotheses, we examined the effect of number and foraging intensity of neighbors on the foraging activity levels (foraging rate, foraging effort, and foraging success rate) of the wintering Oriental Storks (Ciconia boyciana). In this study, we collected focal sampling data on the foraging behavior of storks at Shengjin Lake during winter from 2017 to 2019, controlling the effects of other variables (group identity, wintering years, and wintering periods). We found that foraging activity levels were higher in the presence of foraging neighbors than in their absence. Moreover, individuals adjusted their foraging activity levels according to social information gathered from the behavior of neighboring conspecifics. Focal individuals’ foraging rate and foraging effort were positively correlated with the average foraging rate of neighbors. Their foraging success rate was not influenced by the average foraging rate and foraging success rate of neighbors; however, it was positively correlated with the average foraging effort of neighbors. In conclusion, foraging activity levels of individuals are primarily driven by the intensity of the foraging activity of neighbors. This result differs from the results of previous studies that suggested that flock size was the most important factor determining individual foraging activity levels.

Keywords