Theoretical and Applied Mechanics Letters (May 2021)

Electrothermal analysis of radiofrequency tissue ablation with injectable flexible electrodes considering bio-heat transfer

  • Min Hu,
  • Zhixiong Feng,
  • Yuguang Chu,
  • Yuhang Li

Journal volume & issue
Vol. 11, no. 4
p. 100258

Abstract

Read online

Flexible electrodes have been widely focused on in recent years due to their special mechanical properties, which can be directly integrated onto human soft tissues to actively take effects on human body or passively monitor human vital signs. These flexible electrodes provide a new routine to realize clinical treatment of accurate thermal ablation in the biological tissues via radiofrequency ablation (RFA). Meanwhile, accurately controlling of thermal field is very significant for the thermal ablation in the clinical therapeutics to prevent the healthy tissue from excessive burning. In this paper, both one-dimensional and two-dimensional axisymmetric analytical models for the electrothermal analysis of radiofrequency ablation considering bio-heat transfer are established, which are verified by finite element analysis (FEA) and in vitro experiments on pig skins. In the model, the electrical field and thermal field are both derived analytically to accurately predict the temperature rise in the biological tissues. Furthermore, parameters, such as the blood flow convection in living tissues and thickness of tissue, have obvious effects on the thermal field in the tissues. They may pave the theoretical foundation and provide guidance of RFA with flexible electrodes in the future.

Keywords