Naučno-tehničeskij Vestnik Informacionnyh Tehnologij, Mehaniki i Optiki (Jul 2016)

SYNTHESIS, STRUCTURE AND SPECTRAL PROPERTIES OF POTASSIUMALUMINA- BORATE GLASS WITH NANOCRYSTALS OF MANGANESE FERRITE

  • D. I. Sobolev,
  • N. V. Nikonorov,
  • P. S. Shirshnev,
  • R. K. Nuryev,
  • S. A. Stepanov,
  • D. Y. Panov

DOI
https://doi.org/10.17586/2226-1494-2016-16-4-642-648
Journal volume & issue
Vol. 16, no. 4
pp. 642 – 648

Abstract

Read online

Subject of Research.The paper presents research results of optical properties of potassium-alumina-borate glass, activated with ions of iron and manganese. The formation process of nanocrystals of manganese ferrite MnFe2O4 in potassium-alumina-borate glass host was studied. Magneto-optical characteristics were analyzed. Method. The studied glasses were synthesized by the method of charge melting in the crucible. Potassium-alumina-borate glass system was used (K2O-Al2O3-B2O3) proposed by S.A. Stepanov (Vavilov State Institute). Glass system was doped by 3 wt% of Fe2O3 and 2 wt% MnO by weight (composition 1) and 2 wt% Fe2O3 and 1 wt% MnO by weight (composition 2). The glass transition temperature was 430 °C. Segregating of the crystal phase of manganese ferrite MnFe2O4 occurred during heat treatment at 550 °C for 2 hours in a programmable muffle furnace. The absorption spectrum in the wavelength range 200-2000 nm was recorded with Perkin Elmer Lambda 650 and Varian Cary 500 spectrophotometers. The XRD patterns were obtained on Rigaku Ultima IV X-ray diffractometer by copper anode with a wavelength λ (Cu) = 0.15418 nm. Magneto-optical Verde constant was measured by the angle of polarization plane rotation of the passing light through the sample when the sample is placed in magnetic field. Main Results. New technological modes of potassium-alumina-borate glass synthesis doped with ions of iron and manganese were developed and studied. It is established that during heat treatment nanocrystals of manganese ferrites are evolved with an average size of 18 nm. These glasses have a Verde constant equal to 0.9 arc.min/(cm·Oe). It is shown that obtained glasses possess high absorbance in ultra-violet and visible light spectrum. Practical Relevance. Proposed and analyzed nanoglass-ceramics could be accepted as a basis for creation of sensing environments for sensors current and magnetic field and for creation of optical isolators based on the Faraday effect.

Keywords