Stronger influence of systemic than local hemodynamic-vascular factors on resting-state BOLD functional connectivity
Sebastian C. Schneider,
Stephan Kaczmarz,
Jens Göttler,
Jan Kufer,
Benedikt Zott,
Josef Priller,
Michael Kallmayer,
Claus Zimmer,
Christian Sorg,
Christine Preibisch
Affiliations
Sebastian C. Schneider
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Corresponding Author: Sebastian Schneider, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 München
Stephan Kaczmarz
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Philips GmbH Market DACH, Hamburg, Germany
Jens Göttler
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
Jan Kufer
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, United States of America
Benedikt Zott
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
Josef Priller
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany
Michael Kallmayer
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for vascular surgery, Ismaningerstr. 22, 81675 Munich, Munich, Germany
Claus Zimmer
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
Christian Sorg
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Psychiatry, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
Christine Preibisch
Technical University of Munich, School of Medicine, Klinikum rechts der Isar, TUM Neuroimaging Center, Ismaningerstr. 22, 81675 Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Diagnostic and Interventional Neuroradiology, Ismaningerstr. 22, 81675 Munich, Munich, Germany; Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Clinic for Neurology, Ismaningerstr. 22, 81675 Munich, Munich, Germany
Correlated fluctuations in the blood oxygenation level dependent (BOLD) signal of resting-state functional MRI (i.e., BOLD-functional connectivity, BOLD-FC) reflect a spectrum of neuronal and non-neuronal processes. In particular, there are multiple hemodynamic-vascular influences on BOLD-FC on both systemic (e.g., perfusion delay) and local levels (e.g., neurovascular coupling). While the influence of individual factors has been studied extensively, combined and comparative studies of systemic and local hemodynamic-vascular factors on BOLD-FC are scarce, notably in humans. We employed a multi-modal MRI approach to investigate and compare distinct hemodynamic-vascular processes and their impact on homotopic BOLD-FC in healthy controls and patients with unilateral asymptomatic internal carotid artery stenosis (ICAS). Asymptomatic ICAS is a cerebrovascular disorder, in which neuronal functioning is largely preserved but hemodynamic-vascular processes are impaired, mostly on the side of stenosis. Investigated indicators for local hemodynamic-vascular processes comprise capillary transit time heterogeneity (CTH) and cerebral blood volume (CBV) from dynamic susceptibility contrast (DSC) MRI, and cerebral blood flow (CBF) from pseudo-continuous arterial spin labeling (pCASL). Indicators for systemic processes are time-to-peak (TTP) from DSC MRI and BOLD lags from functional MRI. For each of these parameters, their influence on BOLD-FC was estimated by a comprehensive linear mixed model. Equally across groups, we found that individual mean BOLD-FC, local (CTH, CBV, and CBF) and systemic (TTP and BOLD lag) hemodynamic-vascular factors together explain 40.7% of BOLD-FC variance, with 20% of BOLD-FC variance explained by hemodynamic-vascular factors, with an about two-times larger contribution of systemic versus local factors. We conclude that regional differences in blood supply, i.e., systemic perfusion delays, exert a stronger influence on BOLD-FC than impairments in local neurovascular coupling.