PLoS ONE (Jan 2019)

Canine IL4-10 fusion protein provides disease modifying activity in a canine model of OA; an exploratory study.

  • E M van Helvoort,
  • J Popov-Celeketic,
  • N Eijkelkamp,
  • K Coeleveld,
  • M A Tryfonidou,
  • C D Wijne,
  • C E Hack,
  • F P J G Lafeber,
  • S C Mastbergen

DOI
https://doi.org/10.1371/journal.pone.0219587
Journal volume & issue
Vol. 14, no. 7
p. e0219587

Abstract

Read online

ObjectiveAn ideal disease modifying osteoarthritis drug (DMOAD) has chondroprotective, anti-inflammatory, and analgesic effects. This study describes the production and characterization of a canine IL4-10 fusion protein (IL4-10 FP) and evaluates its in vivo DMOAD activity in a canine model of osteoarthritis (OA).DesignThe canine Groove model was used as an in vivo model of degenerative knee OA. Six weeks after OA induction dogs were intra-articularly injected weekly, for ten weeks, with either IL4-10 FP or phosphate buffered saline (PBS). In addition to the use of human IL4-10 FP, canine IL4-10 FP was developed and characterized in vitro, and tested in vivo. Force plate analysis (FPA) was performed to analyze joint loading as a proxy measure for pain. After ten weeks dogs were euthanized and cartilage and synovial tissue samples were analyzed by histochemistry (OARSI scores) and biochemistry (cartilage proteoglycan turnover).ResultsRepetitive intra-articular injections with human IL4-10 FP led to antibody formation, that blocked its functional activity. Therefore, a canine IL4-10 FP was developed, which completely inhibited LPS-induced TNFα production by canine blood cells, and increased proteoglycan synthesis of canine cartilage in vitro (p = 0.043). In vivo, canine IL4-10 FP restored the, by OA impaired, joint loading (p = 0.002) and increased cartilage proteoglycan content (p = 0.029).ConclusionsThis first study on the potential DMOAD activity upon prolonged repeated treatment with IL4-10 FP demonstrates that a species-specific variant has anti-inflammatory and chondroprotective effects in vitro and chondroprotective and analgesic effects in vivo. These data warrant further research on the DMOAD potential of the IL4-10 FP.