Applied Sciences (Oct 2021)
Predicting High-Risk Groups for COVID-19 Anxiety Using AdaBoost and Nomogram: Findings from Nationwide Survey in South Korea
Abstract
People living in local communities have become more worried about infection due to the extended pandemic situation and the global resurgence of COVID-19. In this study, the author (1) selected features to be included in the nomogram using AdaBoost, which had an advantage in increasing the classification accuracy of single learners and (2) developed a nomogram for predicting high-risk groups of coronavirus anxiety while considering both prediction performance and interpretability based on this. Among 210,606 adults (95,287 males and 115,319 females) in South Korea, 39,768 people (18.9%) experienced anxiety due to COVID-19. The AdaBoost model confirmed that education level, awareness of neighbors/colleagues’ COVID-19 response, age, gender, and subjective stress were five key variables with high weight in predicting anxiety induced by COVID-19 for adults living in South Korean communities. The developed logistic regression nomogram predicted that the risk of anxiety due to COVID-19 would be 63% for a female older adult who felt a lot of subjective stress, did not attend a middle school, was 70.6 years old, and thought that neighbors and colleagues responded to COVID-19 appropriately (classification accuracy = 0.812, precision = 0.761, recall = 0.812, AUC = 0.688, and F-1 score = 0.740). Prospective or retrospective cohort studies are required to causally identify the characteristics of anxiety disorders targeting high-risk COVID-19 anxiety groups identified in this study.
Keywords