Stem Cell Reports (Aug 2017)

p53 Mediates Failure of Human Definitive Hematopoiesis in Dyskeratosis Congenita

  • Wilson Chun Fok,
  • Evandro Luis de Oliveira Niero,
  • Carissa Dege,
  • Kirsten Ann Brenner,
  • Christopher Michael Sturgeon,
  • Luis Francisco Zirnberger Batista

Journal volume & issue
Vol. 9, no. 2
pp. 409 – 418

Abstract

Read online

Summary: Dyskeratosis congenita (DC) is a bone marrow failure syndrome associated with telomere dysfunction. The progression and molecular determinants of hematopoietic failure in DC remain poorly understood. Here, we use the directed differentiation of human embryonic stem cells harboring clinically relevant mutations in telomerase to understand the consequences of DC-associated mutations on the primitive and definitive hematopoietic programs. Interestingly, telomere shortening does not broadly impair hematopoiesis, as primitive hematopoiesis is not impaired in DC cells. In contrast, while phenotypic definitive hemogenic endothelium is specified, the endothelial-to-hematopoietic transition is impaired in cells with shortened telomeres. This failure is caused by DNA damage accrual and is mediated by p53 stabilization. These observations indicate that detrimental effects of telomere shortening in the hematopoietic system are specific to the definitive hematopoietic lineages. This work illustrates how telomere dysfunction impairs hematopoietic development and creates a robust platform for therapeutic discovery for treatment of DC patients. : By directly assessing primitive or definitive hematopoiesis derived from telomerase-mutant hESCs, Batista and colleagues show that telomere shortening specifically impairs definitive hematopoietic potential, while primitive hematopoiesis is instead enhanced. This system offers the unprecedented capability to study hematopoietic failure and suggests that bone marrow failure in DC patients is reversible. Keywords: embryonic stem cells, hematopoiesis, bone marrow failure, telomerase, dyskeratosis congenita, disease modeling, telomeres, telomere damage