Electrochemistry Communications (Aug 2024)

Finite element modeling simulation of oxygen evolution during charging in lithium-oxygen batteries

  • Shotaro Hanada,
  • Shuji Nakanishi,
  • Yoshiharu Mukouyama

Journal volume & issue
Vol. 165
p. 107752

Abstract

Read online

The quest for advanced energy storage solutions has intensified the focus on developing next-generation secondary batteries, with lithium-oxygen batteries (LOB) standing out for their superior theoretical gravimetric energy density. This study introduces a novel model-based approach to battery development, enabling the detailed analysis of charge–discharge cycles and oxygen evolution efficiency within a virtual environment. Our model distinctively simulates the oxidative decomposition of lithium peroxide (Li2O2) and differentiates between its formation through solution and surface pathways, addressing the complexities of the charging process and its multiple elementary steps. The developed model further categorizes the oxidative decomposition species into four distinct types, facilitating a comprehensive understanding of their interactions, voltage profile changes, and O2 evolution within the battery's porous cathode. This approach not only enhances the understanding of battery behavior but also aids in refining the design of component materials, thereby propelling forward the development of LOBs with improved energy density and cycle performance.

Keywords