Micromachines (Jun 2024)

A Physical TCAD Mobility Model of Amorphous In-Ga-Zn-O (a-IGZO) Devices with Spatially Varying Mobility Edges, Band-Tails, and Enhanced Low-Temperature Convergence

  • Mischa Thesberg,
  • Franz Schanovsky,
  • Ying Zhao,
  • Markus Karner,
  • Jose Maria Gonzalez-Medina,
  • Zlatan Stanojević,
  • Adrian Chasin,
  • Gerhard Rzepa

DOI
https://doi.org/10.3390/mi15070829
Journal volume & issue
Vol. 15, no. 7
p. 829

Abstract

Read online

Amorphous indium gallium zinc oxide (a-IGZO) is becoming an increasingly important technological material. Transport in this material is conceptualized as the heavy disorder of the material causing a conduction or mobility band-edge that randomly varies and undulates in space across the entire system. Thus, transport is envisioned as being dominated by percolation physics as carriers traverse this varying band-edge landscape of “hills” and “valleys”. It is then something of a missed opportunity to model such a system using only a compact approach—despite this being the primary focus of the existing literature—as such a system can easily be faithfully reproduced as a true microscopic TCAD model with a real physically varying potential. Thus, in this work, we develop such a “microscopic” TCAD model of a-IGZO and detail a number of key aspects of its implementation. We then demonstrate that it can accurately reproduce experimental results and consider the issue of the addition of non-conducting band-tail states in a numerically efficient manner. Finally, two short studies of 3D effects are undertaken to illustrate the utility of the model: specifically, the cases of variation effects as a function of device size and as a function of surface roughness scattering.

Keywords