PLoS ONE (Jan 2012)

Chemerin and adiponectin contribute reciprocally to metabolic syndrome.

  • Sang Hui Chu,
  • Mi Kyung Lee,
  • Ki Yong Ahn,
  • Jee-Aee Im,
  • Min Soo Park,
  • Duk-Chul Lee,
  • Justin Y Jeon,
  • Ji Won Lee

DOI
https://doi.org/10.1371/journal.pone.0034710
Journal volume & issue
Vol. 7, no. 4
p. e34710

Abstract

Read online

Obesity and metabolic syndrome (MetS) are considered chronic inflammatory states. Chemerin, a novel adipokine, may play an important role in linking MetS and inflammation. We investigated the association of chemerin with inflammatory markers and with characteristics of MetS in apparently healthy overweight and obese adults. We studied 92 adults; 59 men and 33 women whose average body mass index (BMI) was 28.15 ± 5.08 kg/m(2). Anthropometric parameters, insulin resistance indices, lipid profiles, and inflammatory markers including high sensitivity C-reactive protein (hsCRP), pentraxin 3 (PTX3), adiponectin, and chemerin were measured. Controlling for age, gender, and BMI, serum chemerin level was positively correlated with body fat and serum triglyceride, and negatively correlated with adiponectin and high density lipoprotein cholesterol (HDL- C), and was not correlated with altered hsCRP or PTX3 levels. Among the low, moderate and high chemerin groups, high chemerin individuals are more likely to have lower HDL-C. Conversely, individuals in the low adiponectin group are more likely to have lower HDL-C and show more MetS phenotypic traits than moderate and high adiponectin subjects. To determine the relationships of chemerin and adiponectin to MetS and its components, participants were stratified into four groups based on their chemerin and adiponectin levels (high chemerin/high adiponectin, high chemerin/low adiponectin, low chemerin/high adiponectin, or low chemerin/low adiponectin). Participants who were in the high chemerin/low adiponectin group more likely to have dyslipidemia and MetS (OR: 5.79, 95% CI:1.00-33.70) compared to the other three group. Our findings suggest that chemerin and adiponectin may reciprocally participate in the development of MetS.