International Journal of Translational Medicine (Dec 2022)

Screening and Druggability Analysis of Marine Active Metabolites against SARS-CoV-2: An Integrative Computational Approach

  • Selvakumar Murugesan,
  • Chinnasamy Ragavendran,
  • Amir Ali,
  • Velusamy Arumugam,
  • Dinesh Kumar Lakshmanan,
  • Palanikumar Palanichamy,
  • Manigandan Venkatesan,
  • Chinnaperumal Kamaraj,
  • Juan Pedro Luna-Arias,
  • Fernández-Luqueño Fabián,
  • Safir Ullah Khan,
  • Zia ur-Rehman Mashwani,
  • Muhammad Younas

DOI
https://doi.org/10.3390/ijtm3010003
Journal volume & issue
Vol. 3, no. 1
pp. 27 – 41

Abstract

Read online

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have triggered a recent pandemic of respiratory disease and affected almost every country all over the world. A large amount of natural bioactive compounds are under clinical investigation for various diseases. In particular, marine natural compounds are gaining more attention in the new drug development process. The present study aimed to identify potential marine-derived inhibitors against the target proteins of COVID-19 using a computational approach. Currently, 16 marine clinical-level compounds were selected for computational screening against the 4 SARS-CoV-2 main proteases. Computational screening resulted from the best drug candidates for each target based on the binding affinity scores and amino acid interactions. Among these, five marine-derived compounds, namely, chrysophaentin A (−6.6 kcal/mol), geodisterol sulfates (−6.6 kcal/mol), hymenidin (−6.4 kcal/mol), plinabulin (−6.4 kcal/mol), and tetrodotoxin (−6.3 kcal/mol) expressed minimized binding energy and molecular interactions, such as covalent and hydrophobic interactions, with the SARS CoV-2 main protease. Using molecular dynamic studies, the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (ROG), and hydrogen bond (H-Bond) values were calculated for the SARS-CoV-2 main protease with a hymenidin docked complex. Additionally, in silico drug-likeness and pharmacokinetic property assessments of the compounds demonstrated favorable druggability. These results suggest that marine natural compounds are capable of fighting SARS-CoV-2. Further in vitro and in vivo studies need to be carried out to confirm their inhibitory potential.

Keywords