Scientific Reports (Jun 2023)

Interpretable deep learning for diagnosis of fungal and acanthamoeba keratitis using in vivo confocal microscopy images

  • Mahmoud Essalat,
  • Mohammad Abolhosseini,
  • Thanh Huy Le,
  • Seyed Mohamadmehdi Moshtaghion,
  • Mozhgan Rezaei Kanavi

DOI
https://doi.org/10.1038/s41598-023-35085-9
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Infectious keratitis refers to a group of corneal disorders in which corneal tissues suffer inflammation and damage caused by pathogenic infections. Among these disorders, fungal keratitis (FK) and acanthamoeba keratitis (AK) are particularly severe and can cause permanent blindness if not diagnosed early and accurately. In Vivo Confocal Microscopy (IVCM) allows for imaging of different corneal layers and provides an important tool for an early and accurate diagnosis. In this paper, we introduce the IVCM-Keratitis dataset, which comprises of a total of 4001 sample images of AK and FK, as well as non-specific keratitis (NSK) and healthy corneas classes. We use this dataset to develop multiple deep-learning models based on Convolutional Neural Networks (CNNs) to provide automated assistance in enhancing the diagnostic accuracy of confocal microscopy in infectious keratitis. Densenet161 had the best performance among these models, with an accuracy, precision, recall, and F1 score of 93.55%, 92.52%, 94.77%, and 96.93%, respectively. Our study highlights the potential of deep learning models to provide automated diagnostic assistance for infectious keratitis via confocal microscopy images, particularly in the early detection of AK and FK. The proposed model can provide valuable support to both experienced and inexperienced eye-care practitioners in confocal microscopy image analysis, by suggesting the most likely diagnosis. We further demonstrate that these models can highlight the areas of infection in the IVCM images and explain the reasons behind their diagnosis by utilizing saliency maps, a technique used in eXplainable Artificial Intelligence (XAI) to interpret these models.