The Lancet Regional Health. Americas (Jan 2022)

Validation of SmartVA using conventional autopsy: A study of adult deaths in Brazil

  • John D. Hart,
  • Paulo Afonso de André,
  • Carmen Diva Saldiva de André,
  • Tim Adair,
  • Lucia Pereira Barroso,
  • Sandra Valongueiro,
  • Ana Luiza Bierrenbach,
  • Patrícia Ismael de Carvalho,
  • Maria Bernadete de Cerqueira Antunes,
  • Conceição Maria de Oliveira,
  • Luiz Alberto Amador Pereira,
  • Cátia Martinez Minto,
  • Tânia Maria da Silva Bezerra,
  • Sérgio Parente Costa,
  • Bárbara Araújo de Azevedo,
  • José Ricardo Alves de Lima,
  • Denise Souza de Meira Mota,
  • Ana Maria de Oliveira Ramos,
  • Maria de Fátima Marinho de Souza,
  • Luiz Fernando Ferraz da Silva,
  • Elisabeth Barboza França,
  • Deirdre McLaughlin,
  • Ian D. Riley,
  • Paulo Hilário Nascimento Saldiva

Journal volume & issue
Vol. 5
p. 100081

Abstract

Read online

Summary: Background: Accurate cause of death data are essential to guide health policy. However, mortality surveillance is limited in many low-income countries. In such settings, verbal autopsy (VA) is increasingly used to provide population-level cause of death data. VAs are now widely interpreted using the automated algorithms SmartVA and InterVA. Here we use conventional autopsy as the gold standard to validate SmartVA methodology. Methods: This study included adult deaths from natural causes in São Paulo and Recife for which conventional autopsy was indicated. VA was conducted with a relative of the deceased using an amended version of the SmartVA instrument to suit the local context. Causes of death from VA were produced using the SmartVA-Analyze program. Physician coded verbal autopsy (PCVA), conducted on the same questionnaires, and Global Burden of Disease Study data were used as additional comparators. Cause of death data were grouped into 10 broad causes for the validation due to the real-world utility of VA lying in identifying broad population cause of death patterns. Findings: The study included 2,060 deaths in São Paulo and 1,079 in Recife. The cause specific mortality fractions (CSMFs) estimated using SmartVA were broadly similar to conventional autopsy for: cardiovascular diseases (46.8% vs 54.0%, respectively), cancers (10.6% vs 11.4%), infections (7.0% vs 10.4%) and chronic respiratory disease (4.1% vs 3.7%), causes accounting for 76.1% of the autopsy dataset. The SmartVA CSMF estimates were lower than autopsy for “Other NCDs” (7.8% vs 14.6%) and higher for diabetes (13.0% vs 6.6%). CSMF accuracy of SmartVA compared to autopsy was 84.5%. CSMF accuracy for PCVA was 93.0%. Interpretation: The results suggest that SmartVA can, with reasonable accuracy, predict the broad cause of death groups important to assess a population's epidemiological transition. VA remains a useful tool for understanding causes of death where medical certification is not possible.

Keywords