Nature Communications (May 2024)
Exploring high-quality microbial genomes by assembling short-reads with long-range connectivity
Abstract
Abstract Although long-read sequencing enables the generation of complete genomes for unculturable microbes, its high cost limits the widespread adoption of long-read sequencing in large-scale metagenomic studies. An alternative method is to assemble short-reads with long-range connectivity, which can be a cost-effective way to generate high-quality microbial genomes. Here, we develop Pangaea, a bioinformatic approach designed to enhance metagenome assembly using short-reads with long-range connectivity. Pangaea leverages connectivity derived from physical barcodes of linked-reads or virtual barcodes by aligning short-reads to long-reads. Pangaea utilizes a deep learning-based read binning algorithm to assemble co-barcoded reads exhibiting similar sequence contexts and abundances, thereby improving the assembly of high- and medium-abundance microbial genomes. Pangaea also leverages a multi-thresholding algorithm strategy to refine assembly for low-abundance microbes. We benchmark Pangaea on linked-reads and a combination of short- and long-reads from simulation data, mock communities and human gut metagenomes. Pangaea achieves significantly higher contig continuity as well as more near-complete metagenome-assembled genomes (NCMAGs) than the existing assemblers. Pangaea also generates three complete and circular NCMAGs on the human gut microbiomes.