Crystals (Mar 2020)

Mixed Oscillation Flow of Binary Fluid with Minus One Capillary Ratio in the Czochralski Crystal Growth Model

  • Chunmei Wu,
  • Jinhui Chen,
  • Yourong Li

DOI
https://doi.org/10.3390/cryst10030213
Journal volume & issue
Vol. 10, no. 3
p. 213

Abstract

Read online

This work presented a series of three-dimensional unsteady numerical simulations on the characteristics of the mixed oscillation flows of binary mixture in a Czochralski crystal growth model. The silicon-germanium melt is investigated and the capillary ratio is minus one. The simulation results showed that, for the special capillary ratio, the thermal and solutocapillary forces are imposed in opposite directions and counteract each other. With the effect of buoyancy, the balance between the capillary forces is disturbed. Mixed with the forced convection driven by rotation, the capillary-buoyancy convection is complex. The basic mixed flow streamlines are presented as various rolling cells. The directions of the rolls are dependent on the combinations of surface and body forces. With the increase of temperature gradient, the basic flow stability is broken, and the oscillations occur. The crucible rotation has an effective influence on the stability enhancement. However, affected by the crystal rotation, the critical condition experiences an increase to a turning point, and then undergoes a sharp reduction to zero. Once the instability is incubated, the surface oscillations are analyzed. For the three-dimensional steady flow, only spatial oscillations are observed circumferentially, and the surface patterns of spokes, rosebud, and pulsating ring are obtained. For the unsteady oscillation flow, the spiral hydrosoultal waves, rotating waves, and superimposition of spirals and spokes are observed, and the oscillation behaviors are also discussed.

Keywords