UCL Institute of Ophthalmology, University College London, London, United Kingdom; CoMPLEX, Department of Computer Science, University College London, London, United Kingdom
During navigation, the visual responses of neurons in mouse primary visual cortex (V1) are modulated by the animal’s spatial position. Here we show that this spatial modulation is similarly present across multiple higher visual areas but negligible in the main thalamic pathway into V1. Similar to hippocampus, spatial modulation in visual cortex strengthens with experience and with active behavior. Active navigation in a familiar environment, therefore, enhances the spatial modulation of visual signals starting in the cortex.