The Cryosphere (Feb 2023)

Evolution of the dynamics, area, and ice production of the Amundsen Sea Polynya, Antarctica, 2016–2021

  • G. J. Macdonald,
  • G. J. Macdonald,
  • S. F. Ackley,
  • A. M. Mestas-Nuñez,
  • A. Blanco-Cabanillas

DOI
https://doi.org/10.5194/tc-17-457-2023
Journal volume & issue
Vol. 17
pp. 457 – 476

Abstract

Read online

Polynyas are key sites of ice production during the winter and are important sites of biological activity and carbon sequestration during the summer. The Amundsen Sea Polynya (ASP) is the fourth largest Antarctic polynya, has recorded the highest primary productivity, and lies in an embayment of key oceanographic significance. However, knowledge of its dynamics, and of sub-annual variations in its area and ice production, is limited. In this study we primarily utilize Sentinel-1 synthetic aperture radar (SAR) imagery, sea ice concentration products, and climate reanalysis data, along with bathymetric data, to analyze the ASP over the period November 2016–March 2021. Specifically, we analyze (i) qualitative changes in the ASP's characteristics and dynamics, as well as quantitative changes in (ii) summer polynya area, and (iii) winter polynya area and ice production. From our analysis of SAR imagery we find that ice produced by the ASP becomes stuck in the vicinity of the polynya and sometimes flows back into the polynya, contributing to its closure and limiting further ice production. The polynya forms westward off a persistent chain of grounded icebergs that are located at the site of a bathymetric high. Grounded icebergs also influence the outflow of ice and facilitate the formation of a “secondary polynya” at times. Additionally, unlike some polynyas, ice produced by the polynya flows westward after formation, along the coast and into the neighboring sea sector. During the summer and early winter, broader regional sea ice conditions can play an important role in the polynya. The polynya opens in all summers, but record-low sea ice conditions in 2016/17 cause it to become part of the open ocean. During the winter, an average of 78 % of ice production occurs in April–May and September–October, but large polynya events often associated with high, southeasterly or easterly winds can cause ice production throughout the winter. While passive microwave data or daily sea ice concentration products remain key for analyzing variations in polynya area and ice production, we find that the ability to directly observe and qualitatively analyze the polynya at a high temporal and spatial resolution with Sentinel-1 imagery provides important insights about the behavior of the polynya that are not possible with those datasets.