Alexandria Engineering Journal (Mar 2022)

Gyrotactic microorganisms mixed convection flow of nanofluid over a vertically surfaced saturated porous media

  • Hossam A. Nabwey,
  • S.M.M. EL-Kabeir,
  • A.M. Rashad,
  • M.M.M. Abdou

Journal volume & issue
Vol. 61, no. 3
pp. 1804 – 1822

Abstract

Read online

In the current study, a mathematical model is developed to visualize the mixed convection boundary layer flow of a nanofluid containing gyrotactic microorganisms past a permeable vertical surface saturated in a porous medium with variable viscosity and velocity slip effects. Suction/injection impact is taken into detail through the flow with heat and mass transfer analysis. Appropriate transformations are applied to transform the governing partial differential equations into non-linear ordinary differential equations, before being solved numerically using Runge-Kutta procedure is used with shooting technique. A parametric study focusing the influence of involved parameters on various fields such as the local skin friction coefficient, local Nusselt number are graphed via plots along with the local Sherwood number and motile microorganisms density number. The present results indicate that the motile microorganism number is enhanced for increasing Peclet number estimations. Moreover, the growing in the thermophoresis parameter leads to sufficient enhancement in the skin friction coefficient, Sherwood number and the density of the motile microorganism number for injection case, while the opposite behavior occurred with suction case.

Keywords