Информатика и автоматизация (Feb 2020)

О гладкой аппроксимации вероятностных критериев в задачах стохастического программирования

  • Vitaliy Romanovich Sobol,
  • Roman Olegovich Torishnyi

DOI
https://doi.org/10.15622/sp.2020.19.1.7
Journal volume & issue
Vol. 19, no. 1
pp. 180 – 217

Abstract

Read online

В данной работе исследуется один из возможных вариантов гладкой аппроксимации вероятностных критериев в задачах стохастического программирования. Исследование проведено в приложении к задачам оптимизации функции вероятности и функции квантили для функционала потерь, зависящего от вектора управления и одномерной абсолютно непрерывной случайной величины. В данной работе исследуется один из возможных вариантов гладкой аппроксимации вероятностных критериев в задачах стохастического программирования. Исследование проведено в приложении к задачам оптимизации функции вероятности и функции квантили для функционала потерь, зависящего от вектора управления и одномерной абсолютно непрерывной случайной величины. Основная идея аппроксимации – замена разрывной функции Хевисайда в интегральном представлении функции вероятности на гладкую функцию, обладающую такими свойствами как непрерывность, гладкость, а также имеющую легко вычислимые производные. Примером такой функции является функция распределения случайной величины, распределенной по логистическому закону с нулевым средним и конечной дисперсией – сигмоида. Величина, обратно пропорциональная корню из дисперсии, при этом является параметром, обеспечивающим близость исходной функции и ее аппроксимации. Такая замена позволяет получить гладкое приближение функции вероятности, для которого легко могут быть найдены производные по вектору управления и иным параметрам задачи. В статье доказана сходимость аппроксимации функции вероятности, полученной при замене функции Хевисайда на сигмоидальную функцию, к исходной функции вероятности, и получена оценка погрешности такой аппроксимации. Далее получены приближенные выражения для производных функции вероятности по вектору управления и параметру функции, доказана их сходимость к истинным производным при выполнении ряда условий на функционал потерь. С помощью известных соотношений между производными функции вероятности и функции квантили получены приближенные выражения для производных функции квантили по вектору управления и уровню вероятности. Рассмотрены примеры, демонстрирующие возможность применения предложенных оценок к решению задач стохастического программирования с критериями в форме функции вероятности и функции квантили, в том числе в случае многомерной случайной величины.

Keywords