MATEC Web of Conferences (Jan 2019)

Simulation and analysis on low-frequency scattering characteristics of the finite cylindrical shell in shallow water

  • Li Jinyu,
  • Shang Dejiang,
  • Xiao Yan

DOI
https://doi.org/10.1051/matecconf/201928303007
Journal volume & issue
Vol. 283
p. 03007

Abstract

Read online

Low-frequency acoustic scatterings from a finite cylindrical shell are numerically analyzed by FEM. The simulation results show that the acoustic-scattering field in waveguide has lots of frequency-related sidelobes, while no sidelobes exist in free space at low frequencies. The simulation also indicates that the module value in waveguide can be almost 20 dB larger than that in free space at low frequency, which is caused by the ocean boundaries. We also demonstrate that when the incident wave direction is normal to the target at low frequency, the target strength will be maximum and the distribution of the acoustic-scattering field is axisymmetric about the incident waving direction. Meanwhile, the acoustic-scattering field is also related to the impedance of the seabed, and the change of the impedance makes just a little contribution to the scattering field. Finally, the influence of different target locations is analyzed, including the targets near the sea surface, seabed and the middle region of the ocean waveguide, respectively. From simulation results, it is evident that the distribution of the acoustic-scattering field at low frequency has a little difference, which is smaller than 0.5 dB with various target locations, and the change is frequency and boundary-related.