Applied Sciences (Nov 2024)
Inclusion of Muscle Forces Affects Finite Element Prediction of Compression Screw Pullout but Not Fatigue Failure in a Custom Pelvic Implant
Abstract
Custom implants used for pelvic reconstruction in pelvic sarcoma surgery face a high complication rate due to mechanical failures of fixation screws. Consequently, patient-specific finite element (FE) models have been employed to analyze custom pelvic implant durability. However, muscle forces have often been omitted from FE studies of the post-operative pelvis with a custom implant, despite the lack of evidence that this omission has minimal impact on predicted bone, implant, and fixation screw stress distributions. This study investigated the influence of muscle forces on FE predictions of fixation screw pullout and fatigue failure in a custom pelvic implant. Specifically, FE analyses were conducted using a patient-specific FE model loaded with seven sets of personalized muscle and hip joint contact force loading conditions estimated using a personalized neuromusculoskeletal (NMS) model. Predictions of fixation screw pullout and fatigue failure—quantified by simulated screw axial forces and von Mises stresses, respectively—were compared between analyses with and without personalized muscle forces. The study found that muscle forces had a considerable influence on predicted screw pullout but not fatigue failure. However, it remains unclear whether including or excluding muscle forces would yield more conservative predictions of screw failures. Furthermore, while the effect of muscle forces on predicted screw failures was location-dependent for cortical screws, no clear location dependency was observed for cancellous screws. These findings support the combined use of patient-specific FE and NMS models, including loading from muscle forces, when predicting screw pullout but not fatigue failure in custom pelvic implants.
Keywords