Super-resolution three-dimensional structured illumination profilometry for in situ measurement of femtosecond laser ablation morphology
Jielei Ni,
Qianyi Wei,
Yuquan Zhang,
Jie Xu,
Xi Xie,
Yixuan Chen,
Yanan Fu,
Gengwei Cao,
Xiaocong Yuan,
Changjun Min
Affiliations
Jielei Ni
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Qianyi Wei
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Yuquan Zhang
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Jie Xu
Guangdong Laboratory of Artificial Intelligence and Digital Economy (Shenzhen), Shenzhen, China
Xi Xie
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Yixuan Chen
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Yanan Fu
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Gengwei Cao
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Xiaocong Yuan
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Changjun Min
Nanophotonics Research Center, Institute of Microscale Optoelectronics & State Key Laboratory of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen 518060, China
Femtosecond laser ablation has found wide-ranging applications in the surface structuring of nanoelectronics and nanophotonics devices. Traditionally, the inspection of the fabricated three-dimensional (3D) morphology was performed using a scanning electron microscope or atomic force microscopy in an ex situ manner after processing was complete. To quickly monitor and efficiently optimize the quality of surface fabrication, we developed an in situ method to accurately reconstruct the 3D morphology of surface micro-structures. This method is based on a triangulation optical system that utilizes structured illumination. The approach offers a super-resolution capacity, making it a powerful and non-invasive tool for quick in situ monitoring of surface ablation structures.