International Journal of Molecular Sciences (Oct 2021)

Constitutively Activating Mutants of Equine LH/CGR Constitutively Induce Signal Transduction and Inactivating Mutations Impair Biological Activity and Cell-Surface Receptor Loss In Vitro

  • Munkhzaya Byambaragchaa,
  • Hoon-Ki Seong,
  • Seung-Hee Choi,
  • Dae-Jung Kim,
  • Myung-Hwa Kang,
  • Kwan-Sik Min

DOI
https://doi.org/10.3390/ijms221910723
Journal volume & issue
Vol. 22, no. 19
p. 10723

Abstract

Read online

The signal transduction of the equine lutropin/choriogonadotropin receptor (eLH/CGR) is unclear in naturally occurring activating/inactivating mutants of this receptor, which plays an important role in reproductive physiology. We undertook the present study to determine whether conserved structurally related mutations in eLH/CGR exhibit similar mechanisms of signal transduction. We constructed four constitutively activating mutants (M398T, L457R, D564G, and D578Y) and three inactivating mutants (D405N, R464H, and Y546F); measured cyclic adenosine monophosphate (cAMP) accumulation via homogeneous time-resolved fluorescence assays in Chinese hamster ovary cells; and investigated cell-surface receptor loss using an enzyme-linked immunosorbent assay in human embryonic kidney 293 cells. The eLH/CGR-L457R-, -D564G-, and -D578Y-expressing cells exhibited 16.9-, 16.4-, and 11.2-fold increases in basal cAMP response, respectively. The eLH/CGR-D405N- and R464H-expressing cells presented a completely impaired signal transduction, whereas the Y546F-expressing cells exhibited a small increase in cAMP response. The cell-surface receptor loss was 1.4- to 2.4-fold greater in the activating-mutant-expressing cells than in wild-type eLH/CGR-expressing cells, but was completely impaired in the D405N- and Y546F-expressing cells, despite treatment with a high concentration of agonist. In summary, the state of activation of eLH/CGR influenced agonist-induced cell-surface receptor loss, which was directly related to the signal transduction of constitutively activating mutants.

Keywords