Stem Cell Research (Dec 2019)

Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system

  • Juan Pablo Ruiz,
  • Guibin Chen,
  • Juan Jesus Haro Mora,
  • Keyvan Keyvanfar,
  • Chengyu Liu,
  • Jizhong Zou,
  • Jeanette Beers,
  • Hanan Bloomer,
  • Husam Qanash,
  • Naoya Uchida,
  • John F. Tisdale,
  • Manfred Boehm,
  • Andre Larochelle

Journal volume & issue
Vol. 41

Abstract

Read online

One of the most promising objectives of clinical hematology is to derive engraftable autologous hematopoietic stem cells (HSCs) from human induced pluripotent stem cells (iPSCs). Progress in translating iPSC technologies to the clinic relies on the availability of scalable differentiation methodologies. In this study, human iPSCs were differentiated for 21 days using STEMdiff™, a monolayer-based approach for hematopoietic differentiation of human iPSCs that requires no replating, co-culture or embryoid body formation. Both hematopoietic and non-hematopoietic cells were functionally characterized throughout differentiation. In the hematopoietic fraction, an early transient population of primitive CD235a+ erythroid progenitor cells first emerged, followed by hematopoietic progenitors with multilineage differentiation activity in vitro but no long-term engraftment potential in vivo. In later stages of differentiation, a nearly exclusive production of definitive erythroid progenitors was observed. In the non-hematopoietic fraction, we identified a prevalent population of mesenchymal stromal cells and limited arterial vascular endothelium (VE), suggesting that the cellular constitution of the monolayer may be inadequate to support the generation of HSCs with durable repopulating potential. Quantitative modulation of WNT/β-catenin and activin/nodal/TGFβ signaling pathways with CHIR/SB molecules during differentiation enhanced formation of arterial VE, definitive multilineage and erythroid progenitors, but was insufficient to orchestrate the generation of engrafting HSCs. Overall, STEMdiff™ provides a clinically-relevant and readily adaptable platform for the generation of erythroid and multilineage hematopoietic progenitors from human pluripotent stem cells. Keywords: Induced pluripotent stem cell, Hematopoietic stem and progenitor cell, STEMdiffTM hematopoietic differentiation kit, Monolayer differentiation system, Erythroid progenitor, Arterial vascular endothelium