PLoS ONE (Jan 2022)

Pre-processing methods in chest X-ray image classification.

  • Agata Giełczyk,
  • Anna Marciniak,
  • Martyna Tarczewska,
  • Zbigniew Lutowski

DOI
https://doi.org/10.1371/journal.pone.0265949
Journal volume & issue
Vol. 17, no. 4
p. e0265949

Abstract

Read online

BackgroundThe SARS-CoV-2 pandemic began in early 2020, paralyzing human life all over the world and threatening our security. Thus, the need for an effective, novel approach to diagnosing, preventing, and treating COVID-19 infections became paramount.MethodsThis article proposes a machine learning-based method for the classification of chest X-ray images. We also examined some of the pre-processing methods such as thresholding, blurring, and histogram equalization.ResultsWe found the F1-score results rose to 97%, 96%, and 99% for the three analyzed classes: healthy, COVID-19, and pneumonia, respectively.ConclusionOur research provides proof that machine learning can be used to support medics in chest X-ray classification and improving pre-processing leads to improvements in accuracy, precision, recall, and F1-scores.