Journal of Modern Power Systems and Clean Energy (Jan 2022)

Inter-cluster Voltage Balancing Control of Modular Multilevel Cascaded Converter Under Unbalanced Grid Voltage

  • Oghenewvogaga Oghorada,
  • Li Zhang,
  • Ayodele Esan,
  • Dickson Egbune,
  • Julius Uwagboe

DOI
https://doi.org/10.35833/MPCE.2019.000129
Journal volume & issue
Vol. 10, no. 2
pp. 515 – 523

Abstract

Read online

This paper presents a novel inter-cluster direct current (DC) capacitor voltage balancing control scheme for the single-star configured modular multilevel cascaded converter (MMCC)-based static synchronous compensator (STATCOM) under unbalanced grid voltage. The negative-sequence component of grid voltage at the point of common connection (PCC) causes unbalanced active power flow in the phase limbs of converter. This leads to the imbalance of DC voltages of the submodule capacitors across the MMCC phases, and consequently, the malfunction of converter. The proposed solution is to inject both negative-sequence current (NSC) and zero-sequence voltage (ZSV) into the phase limbs of MMCC. A quantification factor QF is used to achieve the sharing of intercluster active power between the NSC and ZSV injection methods. Accurate determination of the quantification factor has been presented. In addition to maintaining the DC voltages of sub-module capacitor across the MMCC phases balanced, it also prevents the overcurrent and overvoltage of converter by injecting NSC and ZSV with the right proportion. The control scheme is validated on a 3.54 kV 1.2 MVA power system using MMCC-based STAT-COM with 3-level bridge cells as sub-modules. The results show that the proposed scheme provides superior effectiveness in eliminating the voltage imbalance of DC capacitor in the phase limb while maintaining low voltage and current ratings.

Keywords