BMC Medical Informatics and Decision Making (Oct 2023)

Prostate cancer detection using e-nose and AI for high probability assessment

  • J. B. Talens,
  • J. Pelegri-Sebastia,
  • T. Sogorb,
  • J. L. Ruiz

DOI
https://doi.org/10.1186/s12911-023-02312-2
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 8

Abstract

Read online

Abstract This research aims to develop a diagnostic tool that can quickly and accurately detect prostate cancer using electronic nose technology and a neural network trained on a dataset of urine samples from patients diagnosed with both prostate cancer and benign prostatic hyperplasia, which incorporates a unique data redundancy method. By analyzing signals from these samples, we were able to significantly reduce the number of unnecessary biopsies and improve the classification method, resulting in a recall rate of 91% for detecting prostate cancer. The goal is to make this technology widely available for use in primary care centers, to allow for rapid and non-invasive diagnoses.

Keywords