JIMD Reports (May 2024)

Computational structural genomics and clinical evidence suggest BCKDK gain‐of‐function may cause a potentially asymptomatic maple syrup urine disease phenotype

  • Emily Singh,
  • Young‐In Chi,
  • Jessica Kopesky,
  • Michael Zimmerman,
  • Raul Urrutia,
  • Donald Basel,
  • Jessica Scott Schwoerer

DOI
https://doi.org/10.1002/jmd2.12419
Journal volume & issue
Vol. 65, no. 3
pp. 144 – 155

Abstract

Read online

Abstract Maple syrup urine disease (MSUD) is a disorder of branched‐chain amino acid metabolism caused by a defect in the branched‐chain α‐ketoacid dehydrogenase (BCKD) complex (OMIM #248600). The hallmark presentation is encephalopathic crisis in neonates, but can also present with metabolic decompensation, developmental delays, and feeding difficulties. Biochemical evidence for MSUD includes elevated branched‐chain amino acids (BCAA) and the pathognomonic presence of alloisoleucine. The BCKD complex contains several subunits associated with autosomal recessive MSUD, while its regulatory proteins have less well‐defined disease associations. We report on two families with the same BCKDK variant (c.1115C>G (p.Thr372Arg)). Probands were detected on newborn screening and demonstrated biochemical evidence of MSUD. The variant was identified in reportedly asymptomatic parents and additional family members who had elevated BCAA and alloisoleucine, following an autosomal dominant pattern of inheritance. To better define the functional effect of the variant on the kinase, we completed molecular modeling using sequence‐based (2D), structural‐based (3D), and dynamic‐based (4D) analyses. The BCKDK variant modeling indicated a gain‐of‐function which leads to impaired BCAA catabolism consistent with the biochemical evidence in this cohort. Combining the evidence gained from molecular modeling with the absence of metabolic decompensation in our patients and several adult family members, despite encountering stressors typically problematic in classic MSUD, we suggest that heterozygous gain‐of‐function variants in BCKDK may represent a novel biochemical phenotype of MSUD with a benign clinical course.

Keywords