Metals (Aug 2024)

Effects of the Primary Carbide Distribution on the Evolution of the Grain Boundary Character Distribution in a Nickel-Based Alloy

  • Shuang Xia,
  • Yuanye Ma,
  • Qin Bai

DOI
https://doi.org/10.3390/met14090960
Journal volume & issue
Vol. 14, no. 9
p. 960

Abstract

Read online

Grain boundary engineering (GBE) was carried out on a nickel-based alloy (GH3535, Ni-16Mo-7Cr-4Fe), which intrinsically has many strings of primary molybdenum carbides. The strings induce inhomogeneous grain size distributions and increase the difficulties in achieving a GBE microstructure. In this work, the effects of the primary carbide distribution on the grain boundary network (GBN) evolution were investigated. A higher proportion of Σ3n grain boundaries (GBs) associated with extensive multiple twinning events was achieved in the specimen with more dispersive and finer primary carbides, which are the results of cross-rolling, i.e., cold rolling with a changed direction. In a starting microstructure with many strings of primary carbides, the dense and frequent occurrence of particle-stimulated nucleation (PSN) around the carbides induced more general high-angle GBs into the GBN, and the inhibition of GB migrations by the carbide strings suppressed the formation of large-sized highly twinned grain clusters. As a consequence, the Σ3n GBs could not be effectively enhanced.

Keywords