Shock and Vibration (Jan 2021)

Bayesian Uncertainty Identification of Model Parameters for the Jointed Structures with Nonlinearity

  • Zhanpeng Shen,
  • Xinen Liu,
  • Chaoping Zang,
  • Shaoquan Hu

DOI
https://doi.org/10.1155/2021/2638995
Journal volume & issue
Vol. 2021

Abstract

Read online

Jointed structures in engineering naturally perform with some of nonlinearity and uncertainty, which significantly affect the dynamic characteristics of the structural system. In this paper, the method of Bayesian uncertainty identification of model parameters for the jointed structures with local nonlinearity is proposed. Firstly, the nonlinear stiffness and damping of the joints under the random excitation are represented with functions of excitation magnitude in terms of the equivalent linearization. The process of uncertainty identification is separated from the representation of local nonlinearity. In this way, the dynamic behavior of the joints is penetratingly characterized instead of ascribing the nonlinearity to uncertainty. Secondly, a variable-expanded Bayesian (VEB) method is originally proposed to identify the mixed of aleatory and epistemic uncertainties of model parameters. Different from traditional Bayesian identification, the aleatory uncertainties of model parameters are identified as one of the most important parts rather than only measurement noise of output. Notablely, a series of intermediate variables are introduced to expand the parameter with aleatory uncertainty in order to overcome the difficulty of establishing the likelihood function. Moreover, a 3-DOF numerical example is illustrated with case studies to verify the proposed method. The influence of observed sample size and prior distribution selection on the identification results is tested. Furthermore, an engineering example of the jointed structure with rubber isolators is performed to show the practicability of the proposed method. It is indicated that the computational model updated with the accurately identified parameters with both nonlinearity and uncertainty has shown the excellent predictive capability.