Incipient Inter-Turn Short Circuit Detection in Induction Motors Using Cumulative Distribution Function and the EfficientNetv2 Model
Carlos Javier Morales-Perez,
Laritza Perez-Enriquez,
Juan Pablo Amezquita-Sanchez,
Jose de Jesus Rangel-Magdaleno,
Martin Valtierra-Rodriguez,
David Granados-Lieberman
Affiliations
Carlos Javier Morales-Perez
ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C.P. 76807, QRO, Mexico
Laritza Perez-Enriquez
Coordinación de Ciencias y Tecnologías del Espacio, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro #1, Sta. María Tonanzintla, San Andrés Cholula C.P. 72840, PUE, Mexico
Juan Pablo Amezquita-Sanchez
ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C.P. 76807, QRO, Mexico
Jose de Jesus Rangel-Magdaleno
Digital Systems Group, Coordinación de Electrónica, Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE), Luis Enrique Erro #1, Sta. María Tonanzintla, San Andrés Cholula C.P. 72840, PUE, Mexico
Martin Valtierra-Rodriguez
ENAP-Research Group, CA-Sistemas Dinámicos, Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río C.P. 76807, QRO, Mexico
David Granados-Lieberman
ENAP-Research Group, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, División de Ingeniera en Electromecánica, Tecnológico Nacional de México, ITS Irapuato, Carr. Irapuato-Silao km 12.5, Colonia El Copal, Irapuato C.P. 36821, GTO, Mexico
Induction motors are one of the most used machines because they provide the necessary traction force for many industrial applications. Their easy operation, installation, maintenance, and reliability make them preferred over other electrical motors. Mechanical and electrical failures, as with other machines, can appear at any stage of their service life, making the stator intern-turn short-circuit fault (ITSC) stand out. Hence, its detection is necessary in order to extend and save useful life, avoiding a breakdown and unprogrammed maintenance processes as well as, in the worst circumstances, a total loss of the machine. Nonetheless, the challenge lies in detecting this type of fault, which has made the analysis and diagnosis processes easier. Such is the case with convolutional neural networks (CNNs), which facilitate the development of methodologies for pattern recognition in several areas of knowledge. Unfortunately, these techniques require a large amount of data for an adequate training process, which is not always available. In this sense, this paper presents a new methodology for the detection of incipient ITSC faults employing a modified cumulative distribution function (CDF) of the current stator signal. Then, these are converted to images and fed into a fast and compact CNN model, trained with a small data set, reaching up to 99.16% accuracy for seven conditions (0, 5, 10, 15, 20, 30, and 40 short-circuited turns) and four mechanical load conditions.