Frontiers in Microbiology (Apr 2021)

Electron & Biomass Dynamics of Cyanothece Under Interacting Nitrogen & Carbon Limitations

  • Sophie Rabouille,
  • Sophie Rabouille,
  • Douglas A. Campbell,
  • Douglas A. Campbell,
  • Takako Masuda,
  • Tomáš Zavřel,
  • Gábor Bernát,
  • Gábor Bernát,
  • Lubos Polerecky,
  • Kimberly Halsey,
  • Meri Eichner,
  • Meri Eichner,
  • Eva Kotabová,
  • Susanne Stephan,
  • Susanne Stephan,
  • Martin Lukeš,
  • Pascal Claquin,
  • José Bonomi-Barufi,
  • Ana Teresa Lombardi,
  • Jan Červený,
  • David J. Suggett,
  • Mario Giordano,
  • Mario Giordano,
  • Jacco C. Kromkamp,
  • Ondřej Prášil

DOI
https://doi.org/10.3389/fmicb.2021.617802
Journal volume & issue
Vol. 12

Abstract

Read online

Marine diazotrophs are a diverse group with key roles in biogeochemical fluxes linked to primary productivity. The unicellular, diazotrophic cyanobacterium Cyanothece is widely found in coastal, subtropical oceans. We analyze the consequences of diazotrophy on growth efficiency, compared to NO3–-supported growth in Cyanothece, to understand how cells cope with N2-fixation when they also have to face carbon limitation, which may transiently affect populations in coastal environments or during blooms of phytoplankton communities. When grown in obligate diazotrophy, cells face the double burden of a more ATP-demanding N-acquisition mode and additional metabolic losses imposed by the transient storage of reducing potential as carbohydrate, compared to a hypothetical N2 assimilation directly driven by photosynthetic electron transport. Further, this energetic burden imposed by N2-fixation could not be alleviated, despite the high irradiance level within the cultures, because photosynthesis was limited by the availability of dissolved inorganic carbon (DIC), and possibly by a constrained capacity for carbon storage. DIC limitation exacerbates the costs on growth imposed by nitrogen fixation. Therefore, the competitive efficiency of diazotrophs could be hindered in areas with insufficient renewal of dissolved gases and/or with intense phytoplankton biomass that both decrease available light energy and draw the DIC level down.

Keywords