Journal of Inequalities and Applications (Aug 2022)

Optimal quadrature formulas for oscillatory integrals in the Sobolev space

  • Kholmat Shadimetov,
  • Abdullo Hayotov,
  • Bakhromjon Bozarov

DOI
https://doi.org/10.1186/s13660-022-02839-4
Journal volume & issue
Vol. 2022, no. 1
pp. 1 – 21

Abstract

Read online

Abstract This work studies the problem of construction of optimal quadrature formulas in the sense of Sard in the space L 2 ( m ) ( 0 , 1 ) $L_{2}^{(m)}(0,1)$ for numerical calculation of Fourier coefficients. Using Sobolev’s method, we obtain new sine and cosine weighted optimal quadrature formulas of such type for N + 1 ≥ m $N + 1\geq m$ , where N + 1 $N + 1$ is the number of nodes. Then, explicit formulas for the optimal coefficients of optimal quadrature formulas are obtained. The obtained optimal quadrature formulas in L 2 ( m ) ( 0 , 1 ) $L_{2}^{(m)}(0,1)$ space are exact for algebraic polynomials of degree ( m − 1 ) $(m-1)$ .

Keywords