Agriculture (Sep 2023)

Design and Experimental Testing of a Centrifugal Wheat Strip Seeding Device

  • Xingcheng An,
  • Xiupei Cheng,
  • Xianliang Wang,
  • Yue Han,
  • Hui Li,
  • Lingyu Liu,
  • Minghao Liu,
  • Meng Liu,
  • Xiangcai Zhang

DOI
https://doi.org/10.3390/agriculture13101883
Journal volume & issue
Vol. 13, no. 10
p. 1883

Abstract

Read online

Wheat sowing has the characteristics of wide and short sowing periods, and there are situations in which the suitable sowing period is missed. In order to meet the needs of high-speed sowing, a centrifugal wheat strip seeding device was designed, the principle of which is that rotating parts were mainly composed of centrifugal concave plate and guide strip rotating in the shell to provide the mechanical force and drive the airflow and then realize high-speed seeding. The influence of the rotational speed of the seed discharging plate, the seed feed rate, and the dip angle of the guide strip on the distribution of the flow field and trajectory of seeds in the device was analyzed. The aerodynamic characteristics of seeds and the distribution of the gas-phase flow field inside the seed displacer under airflow were analyzed by CFD–DEM coupled simulation. The effects of three operating parameters on the coefficient of variation of sowing uniformity (CVSU) and the row-to-row seeding amount coefficient of variation (RSCV) were clarified, and the simulation results were verified by bench experiments after secondary optimization. When the centrifugal concave plate rotational speed, seed feed rate, and guide strip angle were 408 rpm, 4938 grains/s, and 69°, the results showed that CVSU and RSCV were 1.12% and 2.39%, respectively, which was in line with the standards for grain strip seeders stipulated. The designed seed discharge device can sow 3.4 ha per hour. This study provides a reference for research of centrifugal airflow-assisted high-speed seeding devices for wheat.

Keywords