Mathematics (Sep 2024)
Magnetotelluric Forward Modeling Using a Non-Uniform Grid Finite Difference Method
Abstract
Magnetotelluric (MT) forward modeling is essential in geophysical exploration, enabling the investigation of the Earth’s subsurface electrical conductivity. Traditional finite difference methods (FDMs) typically use uniform grids, which can be computationally inefficient and fail to accurately capture complex geological structures. This study addresses these challenges by introducing a non-uniform grid-based FDM for MT forward modeling. The proposed method optimizes computational resources by varying grid resolution, offering finer grids in areas with complex geology and coarser grids in more homogeneous regions. We apply this method to both typical synthetic models and a complex fault structure case study, demonstrating its capability to accurately resolve subsurface features while reducing computational costs. The results highlight the method’s effectiveness in capturing fine-scale details that are often missed by uniform grid approaches. The conclusions drawn from this study suggest that the non-uniform grid FDM not only improves the accuracy of MT modeling but also enhances its efficiency, making it a valuable tool for geophysical exploration in challenging environments.
Keywords