Applied Sciences (Jul 2022)

Chicken Swarm-Based Feature Subset Selection with Optimal Machine Learning Enabled Data Mining Approach

  • Monia Hamdi,
  • Inès Hilali-Jaghdam,
  • Manal M. Khayyat,
  • Bushra M. E. Elnaim,
  • Sayed Abdel-Khalek,
  • Romany F. Mansour

DOI
https://doi.org/10.3390/app12136787
Journal volume & issue
Vol. 12, no. 13
p. 6787

Abstract

Read online

Data mining (DM) involves the process of identifying patterns, correlation, and anomalies existing in massive datasets. The applicability of DM includes several areas such as education, healthcare, business, and finance. Educational Data Mining (EDM) is an interdisciplinary domain which focuses on the applicability of DM, machine learning (ML), and statistical approaches for pattern recognition in massive quantities of educational data. This type of data suffers from the curse of dimensionality problems. Thus, feature selection (FS) approaches become essential. This study designs a Feature Subset Selection with an optimal machine learning model for Educational Data Mining (FSSML-EDM). The proposed method involves three major processes. At the initial stage, the presented FSSML-EDM model uses the Chicken Swarm Optimization-based Feature Selection (CSO-FS) technique for electing feature subsets. Next, an extreme learning machine (ELM) classifier is employed for the classification of educational data. Finally, the Artificial Hummingbird (AHB) algorithm is utilized for adjusting the parameters involved in the ELM model. The performance study revealed that FSSML-EDM model achieves better results compared with other models under several dimensions.

Keywords