APL Photonics (Nov 2018)

Perspective: Prospects of non-invasive sensing of the human brain with diffuse optical imaging

  • Sergio Fantini,
  • Blaise Frederick,
  • Angelo Sassaroli

DOI
https://doi.org/10.1063/1.5038571
Journal volume & issue
Vol. 3, no. 11
pp. 110901 – 110901-15

Abstract

Read online

Since the initial demonstration of near-infrared spectroscopy (NIRS) for noninvasive measurements of brain perfusion and metabolism in the 1970s, and its application to functional brain studies (fNIRS) in the 1990s, the field of noninvasive optical studies of the brain has been continuously growing. Technological developments, data analysis advances, and novel areas of application keep advancing the field. In this article, we provide a view of the state of the field of cerebral NIRS, starting with a brief historical introduction and a description of the information content of the NIRS signal. We argue that NIRS and fNIRS studies should always report data of both oxy- and deoxyhemoglobin concentrations in brain tissue, as they complement each other to provide more complete functional and physiological information, and may help identify different types of confounds. One significant challenge is the assessment of absolute tissue properties, be them optical or physiological, so that relative measurements account for the vast majority of NIRS and fNIRS applications. However, even relative measurements of hemodynamics or metabolic changes face the major problem of a potential contamination from extracerebral tissue layers. Accounting for extracerebral contributions to fNIRS signals is one of the most critical barriers in the field. We present some of the approaches that were proposed to tackle this challenge in the study of cerebral hemodynamics and functional connectivity. Finally, we critically compare fNIRS and functional magnetic resonance imaging by relating their measurements in terms of signal and noise, and by commenting on their complementarity.