Cellular Physiology and Biochemistry (Sep 2018)

FSCN1 Promotes Epithelial-Mesenchymal Transition Through Increasing Snail1 in Ovarian Cancer Cells

  • Jie Li,
  • Songlin Zhang,
  • Meili Pei,
  • Lei Wu,
  • Yanli Liu,
  • Huijin Li,
  • Jiaojiao Lu,
  • Xu Li

DOI
https://doi.org/10.1159/000493622
Journal volume & issue
Vol. 49, no. 5
pp. 1766 – 1777

Abstract

Read online

Background/Aims: Epithelial-mesenchymal transition (EMT) is one of the key mechanisms mediating cancer progression. Snail1 has a pivotal role in the regulation of EMT, involving the loss of E-cadherin and concomitant upregulation of vimentin, among other biomarkers. We have found FSCN1 promoted EMT in ovarian cancer cells, but the precise mechanism of FSCN1 in EMT process has not been clearly elucidated. Methods: The levels of FSCN1 and snail1 were determined in epithelial ovarian cancer(EOC) specimen and in ovarian cancer cells by RT-qPCR. The changes of EMT makers and effects on snail1 by FSCN1 were examined by overexpression or depletion of FSCN1 in EOC cells by RT-qPCR and western blotting. The invasiveness of the FSCN1-modified EOC cells was examined in transwell assay. Co-immunoprecipitation (IP) was performed to detect the interaction between snail1 and FSCN1 in EOC cells. Results: We found FSCN1 and snail1 significantly increased in EOC, and especially in EOC with metastasis. FSCN1 was positively correlated with snail1 expression at the cellular/histological levels. Moreover, we further showed that FSCN1 physiologically interacted with and increased the levels of snail1 to promote ovarian cancer cell EMT. Conclusion: FSCN1 promote EMT through snail1 in ovarian cancer cells. FSCN1 is an attractive novel target for inhibiting invasion and metastasis of EOC cells.

Keywords