Frontiers in Energy Research (May 2024)
Chaos-infused wind power integration in the grey wolf optimal paradigm for combine thermal-wind power plant systems
Abstract
This research presents a novel methodology for tackling the combined thermal-wind economic load dispatch (ELD) issue in contemporary power system. The proposed approach involves hybridizing active-set algorithm (ASA), interior point algorithm (IPA) and sequential quadratic programming (SQP) into grey wolf optimization (GWO) algorithm, while effectively incorporating the intricacies associated with renewable energy sources (RES). A more accurate model is made possible by hybridization for complex systems with memory and hereditary characteristics. The GWO is used as a tool for global search while ASA, IPA and SQP methods are used for rapid local optimization mechanism. The performance evaluation of the design heuristics is carried out on 37 thermal and 3 wind power generating units and outcomes endorse the effectiveness of the proposed scheme over state-of-the-art counterparts. The worthy performance is further validated on statistical assessments in case of thermal-wind integrated ELD problem in terms of measure of central tendency and variation on cost and complexity indices.
Keywords