BMC Plant Biology (Jan 2011)

Characterization of wheat <it>Bell1</it>-type homeobox genes in floral organs of alloplasmic lines with <it>Aegilops crassa </it>cytoplasm

  • Murai Koji,
  • Hirabayashi Chizuru,
  • Hatano Hitoshi,
  • Mizumoto Kota,
  • Takumi Shigeo

DOI
https://doi.org/10.1186/1471-2229-11-2
Journal volume & issue
Vol. 11, no. 1
p. 2

Abstract

Read online

Abstract Background Alloplasmic wheat lines with Aegilops crassa cytoplasm often show homeotic conversion of stamens into pistils under long-day conditions. In the pistillody-exhibiting florets, an ectopic ovule is formed within the transformed stamens, and female sterility is also observed because of abnormal integument development. Results In this study, four wheat Bell1-like homeobox (BLH) genes were isolated and named WBLH1 to WBLH4. WBLH1/WBLH3/WBLH4 expression was observed in the basal boundary region of the ovary in both normal pistils and transformed stamens. WBLH2 was also strongly expressed in integuments not only of normal ovules in pistils but also of the ectopic ovules in transformed stamens, and the WBLH2 expression pattern in the sterile pistils seemed to be identical to that in normal ovules of fertile pistils. In addition, WBLH1 and WBLH3 showed interactions with the three wheat KNOX proteins through the BEL domain. WBLH2, however, formed a complex with wheat KNOTTED1 and ROUGH SHEATH1 orthologs through SKY and BEL domains, but not with a wheat LIGULELESS4 ortholog. Conclusions Expression of the four WBLH genes is evident in reproductive organs including pistils and transformed stamens and is independent from female sterility in alloplasmic wheat lines with Ae. crassa cytoplasm. KNOX-BLH interaction was conserved among various plant species, indicating the significance of KNOX-BLH complex formation in wheat developmental processes. The functional features of WBLH2 are likely to be distinct from other BLH gene functions in wheat development.