Redox Biology (May 2022)

Poly(rC)-binding protein 1 represses ferritinophagy-mediated ferroptosis in head and neck cancer

  • Jaewang Lee,
  • Ji Hyeon You,
  • Jong-Lyel Roh

Journal volume & issue
Vol. 51
p. 102276

Abstract

Read online

A cytosolic iron chaperone poly(rC)-binding protein 1 (PCBP1) is a multifunctional RNA-binding protein involving gene transcription, RNA regulation, and iron loading to ferritins. PCBP1 is also known to repress autophagy, but the role of PCBP1 in ferritinophagy and ferroptosis remains unrevealed. Therefore, we examined the role of PCBP1 in ferritinophagy-mediated ferroptosis in head and neck cancer (HNC) cells. The effects of system xc– cystine/glutamate antiporter (xCT) inhibitors and PCBP1 gene silencing/overexpression were tested on HNC cell lines and mouse tumor xenograft models. These effects were analyzed by assessing cell viability and death, lipid reactive oxygen species and iron production, lipid, malondialdehyde, mRNA/protein expression, and autophagy flux assays. Interaction between PCBP1 and BECN1 mRNA was also examined by luciferase and RNA-protein pull-down assays. PCBP1 gene silencing increased autophagosome generation and autophagic flux. Conversely, PCBP1 upregulation inhibited autophagy activation via direct binding to the CU-rich elements on the 3′-untranslated region (3′-UTR) of BECN1 mRNA. The internal deletion or mutation of the 3′-UTR F2 region recovered BECN1 mRNA stability repressed by PCBP1, resulting in enhanced ferritinophagy-mediated ferroptosis. Besides, PCBP1 knockdown promoted polyunsaturated fatty acid peroxidation by increasing ALOX15 expression. Further, excess iron accumulation caused mitochondrial dysfunction in PCBP1-suppressed cells. A ferroptosis inducer sulfasalazine significantly suppressed tumor growth in mice with the transplantation of PCBP1-silenced HNC. Our data suggest that the dual functions of PCBP1 repressing BECN1 and ALOX15 mRNAs contribute to attenuating cancer susceptibility to ferroptosis inducers.

Keywords