Plants (Feb 2023)

Preparation of Zn−Gly and Se−Gly and Their Effects on the Nutritional Quality of Tea (<i>Camellia sinensis</i>)

  • Feixia Li,
  • Xinzhuan Yao,
  • Litang Lu,
  • Yujie Jiao

DOI
https://doi.org/10.3390/plants12051049
Journal volume & issue
Vol. 12, no. 5
p. 1049

Abstract

Read online

Background: Micronutrient malnutrition affects millions of people due to a lack of Zn and Se. Methods: The process conditions for the manufacture of glycine−chelated sodium selenite (Se−Gly) and zinc sulfate heptahydrate (Zn−Gly) were studied. The effects of ligand concentration, pH, reaction ratio, reaction temperature, and reaction time on fertilizer stability were assessed. The effects of Zn−Gly and Se−Gly on tea plants were determined. Results: Orthogonal experiments showed that the optimal preparation conditions for Zn−Gly (75.80 % Zn chelation rate) were pH 6.0, ligand concentration 4 %, reaction ratio 1:2, reaction time 120 min, reaction temperature 70 ℃. The optimal preparation conditions for Se−Gly (56.75 % Se chelation rate) were pH 6.0, ligand concentration 10%, reaction ratio 2:1, reaction time 40 min, temperature 50 ℃. Each chelate was completely soluble in water and verified by infrared spectroscopy and ultraviolet spectroscopy. Conclusions: Zn−Gly and Se−Gly increased the Zn and Se content in tea plants, and foliar application was more effective than soil application. Combined application of Zn−Gly and Se−Gly was more effective than Zn−Gly or Se−Gly alone. Our findings suggest that Zn−Gly and Se−Gly provide a convenient method of addressing human Zn and Se deficiency.

Keywords